Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.23.509206

ABSTRACT

Clinically licensed COVID-19 vaccines ameliorate viral infection by inducing vaccinee production of neutralizing antibodies that bind to the SARS-CoV-2 Spike protein to inhibit viral cellular entry (Walsh et al., 2020; Baden et al., 2021), however the clinical effectiveness of these vaccines is transitory as viral variants arise that escape antibody neutralization (Tregoning et al., 2021; Willett et al., 2022). Vaccines that solely rely upon a T cell response to combat viral infection could be transformational because they can be based on highly conserved short peptide epitopes that hold the potential for pan-variant immunity, but a T cell vaccine has not been shown to be sufficient for effective antiviral prophylaxis. Here we show that a mRNA-LNP vaccine based on highly conserved short peptide epitopes activates a CD8+ and CD4+ T cell response that prevents mortality in HLA-A*02:01 transgenic mice infected with the SARS-CoV-2 Beta variant of concern (B.1.351). The T cell vaccine produced 5.5 times more CD8+ T cell infiltration of the lungs in response to infection when compared to the Pfizer-BioNTech Comirnaty(R) vaccine. The T cell vaccine did not produce neutralizing antibodies, and thus our results demonstrate that SARS-CoV-2 viral infection can be controlled by a T cell response alone. Our results suggest that further study is merited for pan-variant T cell vaccines, and that T cell vaccines may be relevant for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.28.22271591

ABSTRACT

Rapid identification of SARS-CoV-2 infected individuals through viral RNA detection followed by effective personal isolation remains the most effective way to prevent the spread of this virus. Large-scale RNA detection involves mass specimen collection and transportation. For biosafety reasons, denaturing viral transport medium has been extensively used during the pandemic. But the high concentrations of guanidinium isothiocyanate (GITC) in such media have raised issues around sufficient GITC supply and laboratory safety. Here, we tested whether supplementing media containing low concentrations of GITC with ammonium sulfate (AS) would affect the throat-swab detection of SARS-CoV-2 pseudovirus or a viral inactivation assay targeting both enveloped and non-enveloped viruses. Adding AS to the denaturing transport media reduced the need for high levels of GITC and improved SARS-COV-2 RNA detection without compromising virus inactivation.


Subject(s)
Severe Acute Respiratory Syndrome
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-574304.v1

ABSTRACT

Hopes for a COVID-19 vaccine are now a reality. The spike protein of SARS-CoV-2, which majorly binds to the host receptor ACE2 for cell entry, is used by most of the COVID-19 vaccine candidates as a choice of antigen. ACE2 is highly expressed in the heart and is known to be protective in multiple organs. Interaction of spike with ACE2 has been reported to reduce ACE2 expression and affect ACE2-mediated signal transduction in the heart. However, whether a spike-encoding vaccine will aggravate myocardial damage after a heart attack via affecting ACE2 remains unclear. Therefore, for patients with or at risk of heart diseases, questions arise around the safety of the spike-based vaccines. Here, we demonstrate that ACE2 is up-regulated and protective in the injured mouse heart after myocardial ischemia/reperfusion (I/R). Infecting human cardiomyocyte, smooth muscle cells, endothelial cells, and cardiac fibroblasts with a recombinant adenovirus type-5 vectored COVID-19 vaccine expressing the spike protein (AdSpike) does not affect cell survival and cardiomyocyte function, whether the cells are subjected to hypoxia-reoxygenation injury or not. This observation is further confirmed in human engineered heart tissues. Furthermore, AdSpike vaccination does not aggravate heart damage in wild-type or humanized ACE2 mice after I/R injury, even at a dose that is ten-fold higher as used in human. This study represents the first systematic evaluation of the safety of a leading COVID-19 vaccine under a disease context and may provide important information to ensure maximal protection from COVID-19 in patients with or at risk of heart diseases.


Subject(s)
COVID-19
6.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2101.10902v5

ABSTRACT

We introduce the maximum $n$-times coverage problem that selects $k$ overlays to maximize the summed coverage of weighted elements, where each element must be covered at least $n$ times. We also define the min-cost $n$-times coverage problem where the objective is to select the minimum set of overlays such that the sum of the weights of elements that are covered at least $n$ times is at least $\tau$. Maximum $n$-times coverage is a generalization of the multi-set multi-cover problem, is NP-complete, and is not submodular. We introduce two new practical solutions for $n$-times coverage based on integer linear programming and sequential greedy optimization. We show that maximum $n$-times coverage is a natural way to frame peptide vaccine design, and find that it produces a pan-strain COVID-19 vaccine design that is superior to 29 other published designs in predicted population coverage and the expected number of peptides displayed by each individual's HLA molecules.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.04.200691

ABSTRACT

Subunit vaccines induce immunity to a pathogen by presenting a component of the pathogen and thus inherently limit the representation of pathogen peptides for cellular immunity based memory. We find that SARS-CoV-2 subunit peptides may not be robustly displayed by the Major Histocompatibility Complex (MHC) molecules in certain individuals. We introduce an augmentation strategy for subunit vaccines that adds a small number of SARS-CoV-2 peptides to a vaccine to improve the population coverage of pathogen peptide display. Our population coverage estimates integrate clinical data on peptide immunogenicity in convalescent COVID-19 patients and machine learning predictions. We evaluate the population coverage of 9 different subunits of SARS-CoV-2, including 5 functional domains and 4 full proteins, and augment each of them to fill a predicted coverage gap.


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.16.088989

ABSTRACT

We present a combinatorial machine learning method to evaluate and optimize peptide vaccine formulations, and we find for SARS-CoV-2 that it provides superior predicted display of viral epitopes by MHC class I and MHC class II molecules over populations when compared to other candidate vaccines. Our method is robust to idiosyncratic errors in the prediction of MHC peptide display and considers target population HLA haplotype frequencies during optimization. To minimize clinical development time our methods validate vaccines with multiple peptide presentation algorithms to increase the probability that a vaccine will be effective. We optimize an objective function that is based on the presentation likelihood of a diverse set of vaccine peptides conditioned on a target population HLA haplotype distribution and expected epitope drift. We produce separate peptide formulations for MHC class I loci (HLA-A, HLA-B, and HLA-C) and class II loci (HLA-DP, HLA-DQ, and HLA-DR) to permit signal sequence based cell compartment targeting using nucleic acid based vaccine platforms. Our SARS-CoV-2 MHC class I vaccine formulations provide 93.21% predicted population coverage with at least five vaccine peptide-HLA hits on average in an individual ([≥] 1 peptide 99.91%) with all vaccine peptides perfectly conserved across 4,690 geographically sampled SARS-CoV-2 genomes. Our MHC class II vaccine formulations provide 90.17% predicted coverage with at least five vaccine peptide-HLA hits on average in an individual with all peptides having observed mutation probability [≤] 0.001. We evaluate 29 previously published peptide vaccine designs with our evaluation tool with the requirement of having at least five vaccine peptide-HLA hits per individual, and they have a predicted maximum of 58.51% MHC class I coverage and 71.65% MHC class II coverage given haplotype based analysis. We provide an open source implementation of our design methods (OptiVax), vaccine evaluation tool (EvalVax), as well as the data used in our design efforts.

SELECTION OF CITATIONS
SEARCH DETAIL